
Chaos-induced escape over a potential barrier
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We investigate the statistical parity of a class of chaos-generated noises on the escape of strongly damped
particles out of a potential well. We show that statistical asymmetry in the chaotic fluctuations can lead to a
skewed Maxwell–Boltzmann distribution in the well. Depending on the direction of skew, the Kramers escape
rate is enhanced or suppressed accordingly. Based on the Perron–Frobenious equation, we determine an
analytical expression for the escape rate’s prefactor that accounts for this effect. Furthermore, our perturbative
analysis proves that in the zeroth-order limit, the rate of particle escape converges to the Kramers rate.
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Thermally activated escape from metastable states, or the
study of the transition of a particle over a potential barrier, is
known as the Kramers problem. Kramers, in his work[1],
derived the escape rate of such a particle in a potential well
interacting with a heat bath of equilibrium fluctuations. The
escape rate was found to have the form of an Arrhenius equa-
tion, but with a prefactor that depends on whether the inter-
action is moderate-to-strongly coupled(strong friction re-
gime) or weakly coupled(weak friction regime) to the heat
bath.

The Kramers problem has, since then, continued to attract
growing interest[2,3]. In particular, the escape rate problem
in complex nonequilibrium systems, which typically lack the
property of detailed balance, has recently spurred many the-
oretical investigations[4]. These research studies have arisen
from the urge to understand the physical processes and trans-
port properties of noise-assisted ratchet mechanisms, with
the hope of gaining insights into how useful work can be
extracted from nonequilibrium fluctuations. Diverse physical
examples of such systems under examination include mo-
lecular motors[5], kinetics of ligand binding to proteins[6],
surface electromigration[7], and cold atoms in optical lattice
[8].

Within the class of nonequilibrium systems, a chaos-
driven system is one of the most important for a better un-
derstanding of the Kramers problem. Such a system interacts
with an environment that displays nontrivial low-
dimensional dynamics, with examples coming from a chemi-
cally reactive system that operates in a medium under hydro-
dynamic flow, or the turbulent transport of minute
atmospheric particles[9,10]. In fact, such a system can also
be created out of nanoscale devices[11]. Despite its impor-
tance, systems driven by chaos are still relatively unex-
plored, especially with respect to the Kramers problem, as
most research on particle escape from stationary metastable
nonequilibrium systems are carried out based on stochastic
noise.

We attempt to fill this gap by developing a theory of es-
cape rates for a class of chaotic nonequilibrium fluctuations
acting on strongly damped particles. The theory will enable
us to determine an analytical form of the escape rate, includ-
ing both the prefactor and the exponent. Moreover, it will

also help us to quantify the asymmetric effects of the chaotic
noise on the rate of particle escape.

Let us consider a simple model of a Brownian particle in
a potentialVsxd being subjected to periodic impulsive kick
Fn at a frequency 1/t, with n being the discrete time stamp.
The particle is, in addition, being acted upon by a viscous
force. Then, the phase-space trajectory of the Brownian par-
ticle spn,xnd can be described by the following quasistation-
ary kicked particle (QKP) map in the strong friction
regime[12]:

Fn+1 = GsNdsFnd, s1d

pn+1 = e−gtpn −
V8sxnd

g
w + sgtd1/2sFn+1, s2d

xn+1 = xn +
w

g
pn −

V8sxnd
g

St −
1

g
wD , s3d

wherew=1−e−gt, with g being the damping constant. The
scaling factors2 gives the intensity of the noise, which we
denote ass2=4kT, with k being the Boltzmann constant and
T the temperature. The purported “heat” sourceGsNd is, spe-
cifically, the Tchebyscheff map of orderN. It is well known
that the probability distribution function of these one-
dimensional maps are non-Gaussian[13]. Employing the
symbol k·l to denote the expectation with respect to the in-
variant measurehs·d of the dynamics ofGsNd, we have for all
i and j ,

kFjl = 0; kFiFjl =
1

2
dsi, jd. s4d

The interest in a heat source out of iterates of Tcheby-
scheff maps results from its ergodic, mixing, and chaotic
nature[13]. A map of orderN possesses a positive Lyapunov
exponent of lnN. By treatingt as a fluctuation time scale of
the system, the Kolmogorov–Sinai entropy of the heat bath
turns out to be lnN/t, which approaches infinity ast→0,
showing that a single fast chaotic degree of freedom is able
to generate stochasticity[14]. In this context of vanishing
time scale, it is remarkable that Tchebyscheff maps dynamics
are able to induce a Brownian motion in the case of free field
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[15]. After all, determinism has not disappeared with the
emergence of stochastic behavior. It has simply been rel-
egated when the time scale is infinitesimally small. By in-
creasing the intervalt of the chaotic kicks, the predictability
time scale of the system is raised and deterministic effects
will become more apparent[16]. The consequence of such a
change in time scale, which is to be addressed appropriately
by our discrete-time model, serves to capture the effects of
physical systems far from thermodynamic equilibrium, such
as the Rayleigh–Bénard system with convection rolls[17]
and systems undergoing turbulent flow[10].

A mathematically convenient feature of fluctuations from
Tchebyscheff maps is that all its correlation properties are
known [18],

Kp
i=1

r

FniL = S1

2
Dr

o
s

dSo
i=1

r

siN
ni,0D , s5d

whereos is the summation over all possible configurations
ss1, . . . ,srd, with si = ±1. Note that Eq.(4) is a special case
of Eq. (5) and the first two correlations correspond to that of
white Gaussian noise. Although the rest of its higher-order
correlations are different from the white Gaussian model,
they are nonetheless close to it compared to those generated
by any other smooth chaotic system. Furthermore, for this
class of map, the odd-order correlations exist whenN is
even, but all vanish whenN is odd [19]. Thus, fluctuations
from the odd-order Tchebyscheff maps are said to be statis-
tically symmetric, while those from the even-order Tcheby-
scheff maps are statistically asymmetric[20,21]. These dis-
similarities in correlation properties from other colored noise
models considered for the Kramers problem[2,9] have made
the Tchebyscheff maps an interesting fluctuation model for
the investigation of the escape rate problem.

To examine this problem, let us apply the theoretical for-
malism in [12,22] to obtain the escape rate. In the over-
damped limit, the QKP map is simplified to the following
form:

Fn+1 = GsNdsFnd, s6d

xn+1 = xn + S t

g
D1/2

sFn − S t

g
DV8sxnd. s7d

Let us assume the perturbative ansatzrsF ,x,td=rs0dsF ,x,td
+oi=1

` st /gdi/2qsidsF ,x,td, such thatrs0d is the zeroth-order
probability density, while theqsid’s are theith order correc-
tion terms. By means of the Perron–Frobenius approach, the
behavior of an ensemble of particles given by(6) and (7)
satisfies the associated inhomogeneous Smoluchowski equa-
tion,

kT

g

]2P1

] x2 +
]

] x
SV8sxdP1

g
D −

] P1

] t
= t1/2g−3/2S ] C

] x
D , s8d

whereCsx,td=e−1
1 dFsFqs2dsF ,x,td. Note thatt /g is the per-

turbative parameter, whileP1sx,td is the first-order position
probability distribution. Also, Eq.(8) is applicable only to
Tchebyscheff maps of even order, asrs1d is separable in this

case: rs1d=hsFdP1sx,td, with P1sx,td=P0sx,td
+st /gd1/2Q1sx,td.

Before determining the escape rate from(8), let us con-
sider the situation where the particle is caught at the bottom
of a harmonic potential wellVsxd=vx2/2. In the steady state,
we expect]P1sx,td /]t=0. Hence,(8) can be solved to obtain

kT

g

] P1

] x
+

V8sxd
g

P1 = t1/2g−3/2C − J, s9d

where J is the probability current corresponding to
]P1sx,td /]t=−]J/]x, and it is a constant in the steady state.
For a harmonic potential,J must vanish, as the potential
diverges to an infinite high positive value asx→ ±`, which
indicates that the boundary is asymptotically reflective[23].
These conditions yield

P1sxd = FÎ v

2pkT
+ S t

g
D1/2Fsxd

kT
GexpS−

vx2

2kT
D , s10d

where Fsxd=e−`
x expsvy2/2kTdCsyddy. Consequently, the

ensemble of particles, instead of thermalizing to the usual
Maxwell–Boltzmann distribution, settles down to a perturba-
tively modified version within the harmonic potential well.
An underlying microscopic, statistically asymmetric, fluctua-
tion has thus led to a macroscopic asymmetric position dis-
tribution. In obtaining(10), we have used the normalization
condition e−`

` P1sxddx=1 and e−`
` Q1sxddx=0, asQ1sxd is a

correction term. In fact, the latter condition impliesFs−xd
=−Fs−xd.

Next, let us turn to the Kramers problem. Assuming that
the height of the potential barrierm is large compared with
the intensity of the chaotic noisekT, the particles will equili-
brate in the neighborhood of the potential minimum atx0,
also known as the metastable state, according to the “per-
turbed” Maxwell–Boltzmann distribution given by(10). This
ensues from adopting Kramers’ assumption[1,24] that Vsxd
is dominated by the parabolic partvx2/2 at the metastable
state. This assumption also applies to the transition state,
which occurs at the top of the potential barrier atx1. Suppose
further that the transition state represents an absorbing
boundary. Then, a boundary condition forP1sxd is P1sx1d
=0 [23].

The barrier escape rate is given byKr =J/n0 [1], whereJ
is the probability current andn0=ex0−e

x0+eP1sxddx, with e being
a small number. Whenm@kT, n0 can be suitably approxi-
mated byn0<e−`

` P1sxddx=1. As a result,Kr depends essen-
tially on J. This stationary current is maintained by sources
that supply the potential well with particles having energies
of the orderkT, while being absorbed by sinks at the transi-
tion state[2]. Solving (9) for J with the absorbing boundary
condition, we obtain

Kr =
1

CH kT

g
P1sx0d + t1/2g−3/2E

x0

x1

expSVsxd
kT

DCsxddxJ ,

s11d

where C=ex0

x1 expsVsxd /kTddx. In view of m@kT, C
<expsm /kTde−`

` expf−vsx−x1d2/2kTgdx<expsm /kTd
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3Î2pkT/v and P1sx0d=Îv / s2pkTd from (10), the escape
rate due to chaotic fluctuating forces from even-order Tche-
byscheff maps is given by

Kr =H1 +S t

g
D1/2Î 2p

vkT
E

x0

x1

expSVsxd
kT

DCsxddxJ
3

v

2pg
expS−

m

kT
D . s12d

Equation(12) is the central result of this paper. It shows that
the escape rate preserves the Arrhenius form even though the
source of fluctuations is chaotic and non-Brownian, in con-
trast to escape rates due to other chaotic noise[9]. Although
this is only true for perturbatively smallt /g, it is rather
surprising as the noise is intrinsically deterministic. Further-
more, whent /g→0, the prefactor ofKr approaches one,
indicating a convergence to the Kramers escape rate at the
strong friction regime.

To illustrate our result, we select the second-order Tche-
byscheff map as our fluctuating force. In this instance, the
function Csxd is given by

Csxd =Î v

2p
expS−

Vsxd
kT

DFV8sxd2

kT
− V9sxdG . s13d

In lieu of Kramers’ parabolic approximations, we consider
the potential

Vpsxd =5
1

2
vx2 for x ø 0.5,

m −
1

2
vsx − 1d2 for x . 0.5.

s14d

We restrictv=4m such that asm increases, the transition
state is maintained atx1=1 while the two parabolic curves
are continuously connected. These conditions result in

e0
1 expfVpsxd /kTgCsxddx=v

5
2 / s12Î2pkTd. Thus, for theGs2d

map, the escape rate is of the following explicit form:

Kr = H1 +
4

3
S t

g
D1/2 m2

skTd3/2J v

2pg
expS−

m

kT
D . s15d

The necessity to fix the potential betweenx0 and x1 in
order to obtain the exact prefactor up to first order reflects
the non-Markovian and deterministic nature of the fluctua-
tions. The additional termA=s4/3dst /gd1/2fm2/ skTd3/2g in
the prefactor, as well as the corresponding one in(12), is a
consequence of these properties. Moreover, withA.0, the
deterministicGs2d chaotic noise has the effect of enhancing
the escape rate over the conventional Kramers rate, unlike
results from other colored noise models, which typically
show an escape rate suppression[9,2].

From a qualitative perspective, the enhancement of the
Kramers escape rate can be understood to arise from the
statistical asymmetry of the noise. In the context of white
Gaussian noise(which is statistically symmetric), the classi-
cal theory predicts a quick thermalization of the ensemble of
particles to the Maxwell–Boltzmann distribution in the well,
while the nonequilibrium condition creates a diffusion cur-

rent over the transition state. In the case of chaotic fluctua-
tions due to even-order Tchebyscheff maps, thermalization
also takes place, albeit with a Maxwell–Boltzmann distribu-
tion that is perturbed by a correction term that is an odd
function ofx. This asymmetry in the distribution, as apparent

FIG. 1. The escape rate vsm for Gs2d map chaotic fluctuations
with potential given by(14) based on analytical expression(15)
(dashed-dotted, dashed, and dotted curves correspond tot=1.0, t
=0.5, andt=0.1, respectively) and numerical simulation( D, +, and
* markers correspond tot=1.0, t=0.5, andt=0.1, respectively).
Kramers’ rateKr =sv /2pgdexps−m /kTd is given by the solid curve.
The parameters employed are:g=23103, kT=2.0. An ensemble
size of 13105 is used for the numerical simulations

FIG. 2. The escape rate vsm for different chaotic fluctuations:
Gs2d map(dashed curve-analytical expression;D markers-numerical
simulation), Ulam map(dashed-dotted curve-analytical expression;
+ markers-numerical simulation), Gs3d map(dotted curve-numerical
simulation), and Gs4d map ( * markers-numerical simulation).
Kramers’ rate is given by the solid curve. The parameters employed
are:t=1.0,g=23104, kT=2.0. An ensemble size of 13105 is used
for the numerical simulations
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from (10), depends on the magnitude oft /g, the form of the
potential, and the noise intensity. By increasingt, determin-
istic correlations become dominant. The consequence is a
progressive desymmetrization of the distribution, which
leads to an increase in activation rate beyond the standard
Kramers rate. This interesting feature is clearly depicted in
Fig. 1, where numerical results are shown to closely match
the theoretical outcomes, especially whent /g→0. Note that
the escape rate from numerical simulations is obtained from
the QKP map, withKr =s2tMFPTd−1, wheretMFPT is the mean
first-passage time[2]. In addition, the direction in which the
Maxwell–Boltzmann distribution is desymmetrized depends
on the sign of the odd-order correlations. For example, by
using the Ulam map, which possesses odd-order correlations
of opposite sign to those of theGs2d map, the distribution is
desymmetrized in the opposite direction. The overall effect is
a suppression of the escape rate given byKr =s1−Ad
3sv /2pgdexps−m /kTd, with t /g,9skTd3/ s16m4d [cf. Fig.
2]. Such statistical asymmetric effects may be experimentally
validated by optically trapping dielectric glass beads in a
turbulent environment[25,10].

Interestingly, although statistical asymmetry has led to a
deviation from Kramers’ rate, Eq.(12) shows thatKr con-
verges to the Kramers escape rate for the class of even-order
Tchebyscheff maps in the limitt /g→0, as the particle dis-
tribution in the well converges to the Maxwell–Boltzmann
distribution. However, the rate of convergence to the “sym-
metric state”—the Kramers escape rate, can be different for

different even-order Tchebyscheff maps. For theGs2d map,
the convergence rate scales in the order ofst /gd1/2, while for
the Gs4d map, we expect a more rapid rate ofO(st /gd3/2)
[12].

On the other hand, systems given by Eq.(14) with chaotic
force from the class of odd-order Tchebyscheff maps can be
considered as “symmetric”[21]. This is because the potential
Vsxd appears symmetric to the ensemble of particles, ifm
@kT andt /g is small. In consequence, no desymmetrization
occurs, and we anticipate the escape rate to be the Kramers
rate. Indeed, this is verified numerically for the case ofGs3d

map(see Fig. 2), where we have also found through numeri-
cal simulations that the distribution in the well is Maxwell–
Boltzmann.

Finally, insights on the convergence to the Kramers es-
cape rate can be understood from the perspective of a change
in time scale. Ast approaches zero, Eq.(8) converges to the
Smoluchowski equation with deterministic effects diminish-
ing, while correlations which correspond to the white Gauss-
ian model[18] gaining dominance. This expresses a funda-
mentally important notion that stochasticity, as apparent in
many physical phenomena, may ultimately originate from a
deterministic process that occurs at an infinitesimal time
scale.
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