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Chaos-induced escape over a potential barrier
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We investigate the statistical parity of a class of chaos-generated noises on the escape of strongly damped
particles out of a potential well. We show that statistical asymmetry in the chaotic fluctuations can lead to a
skewed Maxwell-Boltzmann distribution in the well. Depending on the direction of skew, the Kramers escape
rate is enhanced or suppressed accordingly. Based on the Perron—-Frobenious equation, we determine an
analytical expression for the escape rate’s prefactor that accounts for this effect. Furthermore, our perturbative
analysis proves that in the zeroth-order limit, the rate of particle escape converges to the Kramers rate.
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Thermally activated escape from metastable states, or theso help us to quantify the asymmetric effects of the chaotic
study of the transition of a particle over a potential barrier, isnoise on the rate of particle escape.
known as the Kramers problem. Kramers, in his wftk Let us consider a simple model of a Brownian particle in
derived the escape rate of such a particle in a potential wekt potentialV(x) being subjected to periodic impulsive kick
interacting with a heat bath of equilibrium fluctuations. TheF, at a frequency 17, with n being the discrete time stamp.
escape rate was found to have the form of an Arrhenius equdhe particle is, in addition, being acted upon by a viscous
tion, but with a prefactor that depends on whether the interforce. Then, the phase-space trajectory of the Brownian par-
action is moderate-to-strongly coupléstrong friction re- ticle (p,,X,) can be described by the following quasistation-
gime) or weakly coupledweak friction regimeg to the heat ary kicked particle (QKP) map in the strong friction
bath. regime[12]:
The Kramers problem has, since then, continued to attract F...=GN(E) 1)
growing interes{2,3]. In particular, the escape rate problem n+l e
in complex nonequilibrium systems, which typically lack the V' (%)
property of detailed balance, has recently spurred many the- Pri1=€ P — =@+ (yNY%F,q, 2
oretical investigationf4]. These research studies have arisen Y
from the urge to understand the physical processes and trans-
port properties of noise-assisted ratchet mechanisms, with Yo =X +fp _V'(Xn)<7_} ) 3)
the hope of gaining insights into how useful work can be LT A T e y ¢)

Y
extracted from nonequilibrium fluctuations. Diverse physical

examples of such systems under examination include md’-"hel.re ‘szl_e;zw’ .With Kb('aing the d?rr;]ping ponstint.hThe
lecular motorg5], kinetics of ligand binding to protein$], scaling tactors” gives the intensity of the noise, which we

surface electromigratiof¥], and cold atoms in optical lattice 4€Note as’=4KkT, with k being the Boltzmann co)n_stant and
8. T the temperature. The purported “heat” sou@®¥ is, spe-

Within the class of nonequilibrium systems, a Chaos_cifically, the Tchebyscheff map of ordél. It is well known

driven system is one of the most important for a better un—that th? probability distribution f‘%”C“O” of th_ese one-

derstanding of the Kramers problem. Such a system interac@mensmnal maps are non-Gau_ss@lrS_]. Employing the .

with an environment that displays nontrivial low- symbol(-) to denote the expectgﬂon W'I\t‘h respect to the in-

dimensional dynamics, with examples coming from a chemiariant measuré(:) of the dynamics o™, we have for all

cally reactive system that operates in a medium under hydrd—a”dlv

dynamic flow, or the turbulent transport of minute 1

atmospheric particlef9,10. In fact, such a system can also (Fp=0; (FiF)= 5507])- (4)

be created out of nanoscale devi¢&s]. Despite its impor-

tance, systems driven by chaos are still relatively unex- The interest in a heat source out of iterates of Tcheby-

plored, especially with respect to the Kramers problem, ascheff maps results from its ergodic, mixing, and chaotic

most research on particle escape from stationary metastabfature[13]. A map of ordei possesses a positive Lyapunov

nonequilibrium systems are carried out based on stochastexponent of InN. By treatingr as a fluctuation time scale of

noise. the system, the Kolmogorov—Sinai entropy of the heat bath
We attempt to fill this gap by developing a theory of es-turns out to be IlN/7, which approaches infinity as— 0,

cape rates for a class of chaotic nonequilibrium fluctuationshowing that a single fast chaotic degree of freedom is able

acting on strongly damped particles. The theory will enableo generate stochasticityl4]. In this context of vanishing

us to determine an analytical form of the escape rate, includime scale, it is remarkable that Tchebyscheff maps dynamics

ing both the prefactor and the exponent. Moreover, it willare able to induce a Brownian motion in the case of free field
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[15]. After all, determinism has not disappeared with thecase:  p®=h(F)P;(x,t), with P1(X,t) =Py(x, 1)
emergence of stochastic behavior. It has simply been rek(7/y)Y2Q,(x,1).
egated when the time scale is infinitesimally small. By in- Before determining the escape rate fro&), let us con-
creasing the intervat of the chaotic kicks, the predictability sider the situation where the particle is caught at the bottom
time scale of the system is raised and deterministic effectsf a harmonic potential weW(x) = wx?/2. In the steady state,
will become more appareiit6]. The consequence of such a we expectP,(x,t)/dt=0. Hence(8) can be solved to obtain
change in time scale, which is to be addressed appropriately
by our discrete-time model, serves to capture the effects of KTaPy V'(X)P _ 12,7302

hysical systems far from thermodynamic equilibrium, such Y IxX L=y, ©)
physical sys y q , Yy 9X Y
as the Rayleigh-Bénard system with convection rfllg] ) . ,
and systems undergoing turbulent fl¢ag]. where J is the pI’Oba.bI.hty current .correspondlng to

A mathematically convenient feature of fluctuations from ?P1(x,t)/dt=—dJ/x, and it is a constant in the steady state.

Tchebyscheff maps is that all its correlation properties aré©" @ harmonic potential) must vanish, as the potential

known [18], inerges to an infinite high positive valu_e RS+ o0, which
indicates that the boundary is asymptotically reflec{i28].
r 1\" r These conditions yield
IIF, :(5> 28 2 N0, (5
i=1 o i=1

D) 7\ Y2d(x) e
Py(x) = kT +| = T expl - KT (10
whereZ is the summation over all possible configurations 2mkT Ay T 2kT

(a1, ...,07), with 0;=£1. Note that Eq(4) is a special case where d(x)=[*, exp(wy?/2kT)¥(y)dy. Consequently, the

of Eq. (5) and the first two correlations correspond to that ofensemble of particles, instead of thermalizing to the usual
white Gaussian noise. Although the rest of its higher-ordesmaxwell-Boltzmann distribution, settles down to a perturba-
correlations are different from the white Gaussian modeliively modified version within the harmonic potential well.
they are nonetheless close to it compared to those generata@ underlying microscopic, statistically asymmetric, fluctua-
by any other smooth chaotic system. Furthermore, for thigion has thus led to a macroscopic asymmetric position dis-
class of map, the odd-order correlations exist wins tripution. In obtaining(10), we have used the normalization
even, but all vanish wheN is odd[19]. Thus, fluctuations condition [~ P,(x)dx=1 and [”,Q;(X)dx=0, asQ,(X) is a
from the odd-order Tchebyscheff maps are said to be statigsorrection term. In fact, the latter condition implidg—x)
tically symmetric, while those from the even-order Tcheby-:_q,(_x)_

sph_eff maps are stat|lst|cally asymmet[fRD,ZJ]. These d|s-_ Next, let us turn to the Kramers problem. Assuming that
similarities in correlation properties from other colored noisey, o height of the potential barrigr is large compared with
models considered for the Kramers problg] have made e intensity of the chaotic noisd, the particles will equili-
the Tchebyscheff maps an interesting fluctuation model fo[:)rate in the neighborhood of the potential minimumxat

the Investigation .Of the escape rate problem. _ also known as the metastable state, according to the “per-
T.O examine this problem, let us apply the theoretical for'turbed” Maxwell-Boltzmann distribution given {{0). This
malism n [1.2’23 to obtain the escape rate. In the OVEr” ansues from adopting Kramers’ assumptjdr24] that V(x)
foimpe‘j limit, the QKP map is simplified to the following is dominated by the parabolic pasix?/2 at the metastable
: state. This assumption also applies to the transition state,
Fr=GN(F,), (6) which occurs at the top of the potential barriexatSuppose
further that the transition state represents an absorbing
\112 . Eoundary. Then, a boundary condition fBg(x) is P;(xy)
Xne1=Xn t <_) sk, - <_>V,(Xn)- (7) =0[23]. . . .
Y Y The barrier escape rate is given Ky=J3/n, [1], whereJ

is the probability current andy=J2"¢P;(x)dx, with € being

Let us assume the perturbative ansatg,x,t)=p?(F,x,1) . .
o i12+(0) o) ; ) a small number. Whem> KT, ny can be suitably approxi-
+ 27/ Y)q(F, X, 1), such thatp™ is the zeroth-order mated byny= [*_P;(x)dx=1. As a resultK, depends essen-

probability density, while the’s are theith order correc- all 1. This stati y intained b
tion terms. By means of the Perron—Frobenius approach, th glly on J. This stationary current Is maintainéd by sources

: . - that supply the potential well with particles having energies
behavior of an ensemble of particles given 8 and (7) %{_the orderkT, while being absorbed by sinks at the transi-

satisfies the associated inhomogeneous Smoluchowski equtlon state[2]. Solving(9) for J with the absorbing boundary

ion " .
tion, condition, we obtain

KT#PPy 9 (VV(XOP1\ 9Py 1 _apf 9V x

= - A ST T el 1) kT AV

y ax? +ax< y at ™ ax )’ ® K == —Pl(xo)+71’2y‘3’2f exp(—(x)>\lf(x)dx ,
Cl vy X KT

whereW (x,t)=1,dFsFd?(F,x,t). Note thatr/y is the per- (11)
turbative parameter, whil@,(x,t) is the first-order position

probability distribution. Also, Eq(8) is applicable only to where C=[lexp(V(x)/kT)dx. In view of u>kT, C
Tchebyscheff maps of even order, @8 is separable in this =~exp(u/KT)[~, exd—w(X—x;)?/ 2k T]dx~ exp(u/KT)
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X \2mkT/ w and Py(xg) =\ w/(27kT) from (10), the escape 12x10'4
rate due to chaotic fluctuating forces from even-order Tche- '
byscheff maps is given by

1/2 2 X1 V \'\_
Ki=11+ <I> \/ —Wf exp(ﬁ>\lf(x)dx ™
v wkT X KT T

w M
X 20y exp( kT)' (12 o
Equation(12) is the central result of this paper. It shows that
the escape rate preserves the Arrhenius form even though tr 041
source of fluctuations is chaotic and non-Brownian, in con-
trast to escape rates due to other chaotic ng@geAlthough
this is only true for perturbatively smalt/y, it is rather
surprising as the noise is intrinsically deterministic. Further-
more, when7/y—0, the prefactor oK, approaches one,
indicating a convergence to the Kramers escape rate at th
strong friction regime.
To illustrate our result, we select the second-order Tche- FIG. 1. The escape rate ysfor G map chaotic fluctuations

byscheff map as our fluctuating force. In this instance, thevith potential given by(14) based on analytical expressiohs)
function W(x) is given by (dashed-dotted, dashed, and dotted curves correspond I, 7

=0.5, andr=0.1, respectivelyand numerical simulatiofA, +, and

® V(x) \| V'(x)? * markers correspond te=1.0, 7=0.5, and7=0.1, respectively
W(x) = Py e . V'(x) [. (13 Kramers' rateK,=(w/2my)exp(-u/KT) is given by the solid curve.
m The parameters employed arg=2x 10%, kT=2.0. An ensemble

In lieu of Kramers' parabolic approximations, we considersize of 1x 10° is used for the numerical simulations
the potential

-

rent over the transition state. In the case of chaotic fluctua-

1.5 tions due to even-order Tchebyscheff maps, thermalization
wX for x=< 0.5, N S
B also takes place, albeit with a Maxwell-Boltzmann distribu-
Vp(x) = (14) tion that is perturbed by a correction term that is an odd
= Ew(x— 1)? for x> 0.5. function ofx. This asymmetry in the distribution, as apparent
We restrictw=4u such that asu increases, the transition x107°

state is maintained at;=1 while the two parabolic curves )
are continuously connected. These conditions result in 74l

[3 exgV,(x)/KTIW(x)dx= w3/ (12/27KT). Thus, for theG®
map, the escape rate is of the following explicit form:

4/ 7\12 w2 o p( M) 5_0-_', R
Ki=11+=(~| —=n({=——exp-=]. (15
’ { 3(7> KD [ 20y @A 77) 19

4
The necessity to fix the potential betwergand x; in

order to obtain the exact prefactor up to first order reflects 3-0f
the non-Markovian and deterministic nature of the fluctua-
tions. The additional termA=(4/3)(7/y)Yq u?/(kT)*?] in
the prefactor, as well as the corresponding onél®), is a
consequence of these properties. Moreover, With0, the
deterministicG® chaotic noise has the effect of enhancing
the escape rate over the conventional Kramers rate, unlike
results from other colored noise models, which typically

show an escape rate suppress{@ﬂ]. FIG. 2. The escape rate ys for different chaotic fluctuations:
From a qualitative perspective, the enhancement of thes@ map(dashed curve-analytical expressianmarkers-numerical
Kramers escape rate can be understood to arise from thgnylation, Ulam map(dashed-dotted curve-analytical expression;
statistical asymmetry of the noise. In the context of White+ markers-numerical simu]ati@er(s) map(dotted curve-numerical
Gaussian noiséwhich is statistically symmetrjc the classi-  simulation, and G® map ( * markers-numerical simulation
cal theory predicts a quick thermalization of the ensemble okramers' rate is given by the solid curve. The parameters employed
particles to the Maxwell-Boltzmann distribution in the well, are:7=1.0,y=2x 10% kT=2.0. An ensemble size 0f110° is used
while the nonequilibrium condition creates a diffusion cur-for the numerical simulations

1.0f

045203-3



CHEW, TING, AND LAl

from (10), depends on the magnitude ofy, the form of the
potential, and the noise intensity. By increasingletermin-
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different even-order Tchebyscheff maps. For &€ map,
the convergence rate scales in the ordefrof)*/2, while for

istic correlations become dominant. The consequence is he G map, we expect a more rapid rate Of(7/y)%?)

progressive desymmetrization of the distribution, which
leads to an increase in activation rate beyond the standa
Kramers rate. This interesting feature is clearly depicted i
Fig. 1, where numerical results are shown to closely matc

the theoretical outcomes, especially whery— 0. Note that

47

On the other hand, systems given by El) with chaotic
orce from the class of odd-order Tchebyscheff maps can be

considered as “symmetri¢21]. This is because the potential

the escape rate from numerical simulations is obtained fronY(X) appears symmetric to the ensemble of particlesy if

the QKP map, withK, =(2tyepr) "1, Wheretyepr is the mean

>KkT and 7/ is small. In consequence, no desymmetrization

first-passage timg2]. In addition, the direction in which the occurs, and we anticipate the escape rate to be the Kramers
Maxwell-Boltzmann distribution is desymmetrized dependsate. Indeed, this is verified numerically for the caseG6?

on the sign of the odd-order correlations. For example, bynap(see Fig. 2, where we have also found through numeri-
using the Ulam map, which possesses odd-order correlatiorgil simulations that the distribution in the well is Maxwell—

of opposite sign to those of t18? map, the distribution is

Boltzmann.

desymmetrized in the opposite direction. The overall effect is Fina"y, insights on the convergence to the Kramers es-

a suppression of the escape rate given Ky=(1-A)
X (wl2my)exp(—-u/KT), with 7/y<9(kT)3/(16u* [cf. Fig.

cape rate can be understood from the perspective of a change

in time scale. Asr approaches zero, E¢(B) converges to the

2]. Such statistical asymmetric effects may be experimentallsmoluchowski equation with deterministic effects diminish-
validated by optically trapping dielectric glass beads in ajng while correlations which correspond to the white Gauss-

turbulent environmeni25,1Q.

ian model[18] gaining dominance. This expresses a funda-

Interestingly, although statistical asymmetry has led t0 anentally important notion that stochasticity, as apparent in

deviation from Kramers’ rate, Eq12) shows thatk, con-

many physical phenomena, may ultimately originate from a

verges to the Kramers escape rate for the class of even-ordggterministic process that occurs at an infinitesimal time

Tchebyscheff maps in the limit/ y— 0, as the particle dis-
tribution in the well converges to the Maxwell-Boltzmann
distribution. However, the rate of convergence to the “sym-

scale.
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